全球最具影响力的商业智能BI、大数据分析、人工智能等数据科学领域的社区媒体和职业发展平台

168大数据

 找回密码
 立即注册

QQ登录

只需一步,快速开始

1 2 3 4 5
开启左侧

新零售环境下的会员数据化运营

[复制链接]
发表于 2019-7-11 21:26:20 | 显示全部楼层 |阅读模式
本帖最后由 168主编 于 2019-7-11 21:28 编辑

广义的零售行业,是一个非常大的概念,其中包含便利店、商超、商城、步行街、餐饮、服装、图书、健身等多种业态。而零售注重的是快速把握流行趋势、快速把握客户的情况,从而进行精准的营销。而如今线上商城的冲击、成本的不断提高,零售行业需要全面的转型升级。那么在这样的新零售情况下,如何做好会员的运营,如何做好CRM甚至说如今的SCRM就非常重要。
什么是新零售
新零售这个概念是马云2016年下半年提出来的,至今已经快要有三年的时间,而对于新零售的解释有多种多样,如:线上线下深度融合、人货场、购物体验、无人零售等等。但是,无论那种新零售的模式,为的都是能够为企业创造更多的利润,能够为消费者带来更好的产品及购物体验。而这就离不开对消费者的精确洞察。
什么是数据化运营
所谓数据化运营,就是运用大数据的手段对业务进行运营,帮助企业通过数字化转型提升自身业绩的过程。数据化运营的过程需要经历数据治理、数据整合、数据分析、数据展现等几个过程。在这个过程中,最终要达到的目标则是:企业可以通过对人货场中的数据进行指标分析,进行其趋势的探究、数据的对比和下钻细分,将客户分群进行精准营销。
通过指标的整理形成数据化运营大屏,使用恰当的图表展示对数据进行监控。
如何进行数据化运营
1、报表
对数据进行运营,少不了报表的参与,一般企业要进行数据的监控与复盘,则需要日报、月报等相应的报表。对于新零售行业,建议对数据进行日度、周度、月度的分析,因为零售行业的规律是每周的变化,一般是周末会较平时更为火爆。
  • 日报
对于日报,一般是早晨发,用以总结前一天的会员运营情况。主要统计昨日公众号、微博等自媒体渠道新增粉丝数量、注册会员数量、会员消费情况等数据。如图(本文图中均为模拟数据):
微信公众平台和微博均有相应API接口可以调用数据,对于CRM与POS系统也有会员数据与会员消费情况数据,二者数据相结合,得到会员的转化情况,加之各地会员的消费情况查看全国(或某区域)的消费活跃情况,对于BI系统,该数据是可以点击相应省份进行下钻分析,找出有问题的省份,并且可以对不同省份进行数据对比,对于转化率较低的省份,需要加强营销策略,有区别的进行营销。另外可以查看消费的会员加入的年费,可以看到客户黏性是否需要进一步加强。然后,再进一步分析不同属性客户的数据:
从男女分布可以看出,店铺以男性顾客为主,且男性的购买力相对于女性要强,但是有很大一部分男性客户客单价较低,此时要考虑对于该部分男性会员予以组合购买、发放优惠券等优惠政策,以提升该部分客单价。
上图中,我们发现会员客单价最小值是负数。在实际的数据分析中,这样的事情是正常的,下面就让我们进一步探究前一天的客单情况:
对于客单分析先分析不同的年龄段,分析公司产品对不同年龄段的人吸引力,也可以及时调整产品设计或者供货商渠道,保障公司品牌的针对性,把握客户需求趋势。
当然,刚刚提到的消费为负数的也要列出来,这些负值有可能是因为退款导致,这些是要重点关注的。除了异常的负值,消费top10的会员也要关注,这些top10的会员一般超过客单价很多,需要对其消费订单进行盘查,若是高频低额消费,则很有可能是店员恶意刷积分兑换礼品,这种数据提交到营运部门,查询监控便可得知。
  • 周报
对于日报而言是每天的总结,是每日的数据变化。由于零售行业和周的影响很大,所以可以进行周报的分析。周度分析一般在每周一进行,每周一同时要分析
对于周报而言,可以将日报的数据进行趋势分析,如上图销售额在周六周日有明显上升,但转化率却下降,说明周末人流量大,应当适当采取吸粉及会员注册活动。平均回购率可以进行监控,看是否是正常水平。购物篮系数反应了商品的连带情况,4.88说明平均每个小票/购物篮中有4.88样商品。可以根据不同品类或商品进行购物篮分析,使用高连带的产品进行促销活动,提升商品连带,增加销售额。
  • 月报
由于月度数据的数据量相对较大,因而可以分析的内容也会多一些,且月报是对一个月的业绩总结,企业也会每个月进行月度的经营分析,因而月报相对来说更加重要。
一般最为关注的便是本月的销售额和来店人数情况,查看每一个月的来店消费人数情况,查看每个月的变化。然后,拿出一个月的每天数据再进行分析,从上图中总体情况可以看出,14号、15号的客单价猛然上升,但当天并没有人数的明显上升,这时便可以使用BI工具进行下钻到当天会员消费情况,查看会员客单价上升的原因,询问当天是否有什么会员活动,若有活动或相应动作,说明该种促销方式可以提高会员客单价,可以在下次节假日活动中进行。除了上述的数据外,还要关注消费时段,从上图中看出晚上下班后是消费高峰期。
上面是整个月的情况,那本月的数据还可以按照周度的维度进行分析:
前面看的是整体的状况,接下来看会员的状况,将会员与普通顾客的情况进行比较,上面的前两张图通过双Y联合图,将两个维度的客户拉到同一个坐标高度,可以明显看出会员的消费变化。会员第四周的周日销售额出现异常,需要进一步查找原因。通过第二张图发现当天会员的消费人数下降,是造成整个销售额下降的根本原因,此时需结合当天是否有相应的促销活动与会员身份消费冲突来判断,若有相应的促销活动,下次应当相应的规则规避。
2、数据模型
对于数据模型,这里算是老生常谈,常用的数据模型有RFM,AARRR,帕累托分析等等,这其中在不同的场合要有不同的应用。下面简单介绍几个常用摸模型:
  • RFM模型
RFM模型是衡量客户价值和客户创利能力的重要工具和手段。其是通过通过一个客户的近期购买行为、购买的总体频率以及花了多少钱3项指标来描述该客户的价值状况。
注:图片来自百度百科
通常,我们要画一个RFM矩阵来辅助我们对实际的客户运营工作,对于不同形态的矩阵表现,要进行相应的应对措施。同时RFM矩阵也可以提取相应的数据进行A/B测试,以便确认如何进行下一步运营。
一般的企业都会有大量的沉睡客户,也就是矩阵的左下角数据会比较大,此时应当对该部分用户做出相应的措施。当然,对于不同细分行业,RFM的区间划分应当不同,如房产和汽车等,R>360是很正常的现象,而对于日常消费品,这种则属于沉睡客户。
  • AARRR模型
互联网AARRR分别代表了五个单词,分别是产品生命周期中的五个阶段:
  • 获取(Acquisition):获取用户,用户下载产品
  • 激活(Activation):用户第一次使用产品
  • 留存(Retention):用户回到产品,再次使用
  • 收入(Revenue):产品(通过用户)赚钱
  • 传播(Refer):用户告诉其他用户
类比的线下AARRR模型可以描述如下:
  • 意识(Awareness):顾客是否听说过品牌?是否有关注品牌(公众号、微博等)?
  • 激活(Activation):顾客购买体验
  • 复购(Repurchase):顾客是否还会再次购买该品牌
  • 售后(Repair):产品出现问题的售后情况
  • 传播(Refer):顾客告诉其他顾客
线下的AARRR模型和线上的AARRR模型略有不同:
STEP1:线上的是通过各种引流的方式进行获取(Acquisition)用户,进而使用。而线下的更多的是通过听说或者了解这个品牌后,有了这样的意识(Awareness),进而进入店铺,进行第一次购物体验;
STEP2:第二个步骤基本相同,都是第一次发生接触,线上是对产品的第一次使用,而线下则是从第一次购物体验开始的。但是对于线上产品来说,第一次使用不见得消费,而且互联网产品大部分都是以免费来获取流量的,这也是线上线下的本质不同。
STEP3:对于第三步,都是通过第一次接触,再次产生接触,不同的是线上产品此次仍旧可能是未进行消费,而对于线下零售业而言,这便是复购了。相比之下,这个转化率可能会有区别,一般情况复购率会低于互联网产品的留存率