最具影响力的数字化技术在线社区

168大数据

 找回密码
 立即注册

QQ登录

只需一步,快速开始

1 2 3 4 5
打印 上一主题 下一主题
开启左侧

如何构建一个大数据科学家团队?选择复合技能企业目标数据分析是正确的

[复制链接]
跳转到指定楼层
楼主
发表于 2014-10-15 16:13:02 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

马上注册,结交更多数据大咖,获取更多知识干货,轻松玩转大数据

您需要 登录 才可以下载或查看,没有帐号?立即注册

x
现代企业们期望大数据能为企业服务,或更甚者期望打造一种数据分析文化。但是总是要在投入资源和金钱之前得到几个关键问题答案:
  • 什么是商业案例分析?
  • 应该使用哪一个大数据的工具?
  • 是否应该聘请一个数据分析供应商来处理一切?
  • 如果我们建立了一个内部​​团队,我们在哪里能得到的分析人才?
最后一个问题我们哪里能得到数据分析的人才,是源自需要满足不断增长的需求。是为企业和消费者数据继续呈指数级增长的数据科学家的报告(有时是有争议的)提出的不足。但是如果一个企业完全致力于数据分析,它将会寻找或培养人才。
除了人才招募,企业面临根本挑战如何是建立一个有效的数据分析团队,其中最佳组合条件包含了技能,背景和个性。

两名高级数据科学家带领各自的数据科学运用方法与CITEworld讨论有关团队组合的问题。
eXelate数字营销数据管理平台供应商的高级副总裁Kevin Lyons 表示:“第一步是定义明确的业务目标,或者至少有一个公司正在努力,如果你不能定义它,你就没有办法去实现它。”
用服务于Google和Facebook的数据科学家们举例,他们必须提供计算机分析方法,让计算机来晚场关于消费者和可以预测的行为。这些类型的数据科学家通常具有较强的数学和计算技能。
相反的,数据科学家通常需要较强的“软”技能,为人类产品制造提供分析,产品生产提供决策。
Dstillery 是一家市场定位于网页数据分析,以帮助其客户进行广告品牌的定位的公司,公司的首席科学家Claudia Perlich说“你需要至少有一个人可以沟通,这个人可以坐下来好好与首席技术官或首席营销官和首席执行官谈谈业务问题,来帮助数据科学家得出什么样的角色,什么样的特殊任务是他们的工作方向。
数据科学家谁必须具有一项基本的技能是可以互通甚至互动业务部门和行政部门,Perlich强调,他们需要一些基本的技术人才挑起大梁。
她说“他们不需要超强的写代码的能力,但他们需要有获取数据的能力,他们需要会一种脚本语言,比如Perl或Python,是为了让他们一旦发现了数据后及时处理,他们不需要概率论,他们需要对统计的事实和结果完全理解,但是他们需要了解真正的数据含义,而不是一个有误导性行综合数据平均值。
Lyons更进了一步,他说他是一名纯粹的,喜爱数据科学的数据科学家。
他表示如果你未来有拥有一个成功数据科学家团队,你需要有数据科学技能,这意味着你需要有坚实的基础,例如计算机科学与建模的统计专业技能,熟悉程序语言,如Java或C,以及熟悉脚本语言如Python,熟悉Unix和Linux。
Lyons还建议用功能性方法来构建你的数据的团队,下面的表述来自eXelate。
他说:“每一个数据项目由四部分组成,第一是理解业务需求,第二是收集和编排,准备数据,第三个是做数据模型,第四是运行出结果。”

Lyons :“我们这里所有的人,谁能理解企业需求,从而把这种需求去变成计划就代表谁有非常好的商业感觉。 我们与数据管理者谁可以准备数据,无论方式是临时或自动的,我们建模的过程可以数字,也可可视化,最后将代码编入自动化系统。

同样,Perlich说Dstillery团队的成员是涵盖所有有效数据分析所需的工作角色的,其中包含了沟通高手,统计学家,编码专家。


Perlich和Lyons的两个冠军数据科学团队都是多样性的。
Lyons 说:“我尽量让尽可能多层次人才出现在我的团队当中,目前我们已经有Linux管理背景人才,有金融计算管理人才,有地理学背景并且是最好的数据可视化专家人才,有些人来自精算学领域,还有人有数据管理经验和人才培训机构工作经验。“
Perlich :“这里有很多来自不同背景的聪明人,他们的好奇心让他们学到了如何得到要自己想要的数据。”
最后,根据Perlich所表述,企业招聘一个单纯数据科学家是完全不必要的。
她说:“他们并不需要了解你所在的行业中,但如果他们足够聪明,是合格的数据科学家,他们可以了解你在一个月左右的行业。”


楼主热帖
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖 赞 踩

168大数据 - 论坛版权1.本主题所有言论和图片纯属网友个人见解,与本站立场无关
2.本站所有主题由网友自行投稿发布。若为首发或独家,该帖子作者与168大数据享有帖子相关版权。
3.其他单位或个人使用、转载或引用本文时必须同时征得该帖子作者和168大数据的同意,并添加本文出处。
4.本站所收集的部分公开资料来源于网络,转载目的在于传递价值及用于交流学习,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。
5.任何通过此网页连接而得到的资讯、产品及服务,本站概不负责,亦不负任何法律责任。
6.本站遵循行业规范,任何转载的稿件都会明确标注作者和来源,若标注有误或遗漏而侵犯到任何版权问题,请尽快告知,本站将及时删除。
7.168大数据管理员和版主有权不事先通知发贴者而删除本文。

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

关闭

站长推荐上一条 /1 下一条

关于我们|小黑屋|Archiver|168大数据 ( 京ICP备14035423号|申请友情链接

GMT+8, 2024-5-16 14:58

Powered by BI168大数据社区

© 2012-2014 168大数据

快速回复 返回顶部 返回列表