168大数据

 找回密码
 立即注册

QQ登录

只需一步,快速开始

扫一扫,访问微社区

1 2 3 4 5
开启左侧

从咨询公司学到的思考分析方法

[复制链接]
发表于 2018-2-11 12:05:33 | 显示全部楼层 |阅读模式
作者:秦路
个人公众号:秦路
我们一直说的思考能力,它是可以经培养和训练,后天习得的特质。这也意味着我们可以借助前辈们的经验,站在巨人的肩膀上眺望。
行业内常把这种可总结和复用的经验叫做思考框架。
一个好的思考框架,首先应该满足易学。如果大部分人都掌握不了,那它只是少部分人的术。让初读的人觉得优雅,能够用一句话解释清楚,就不必用整篇文章赘述。
其次要满足易用。框架之所以称为框架,它只是骨,内里的血肉能因不同人不同理解发挥出不同的效果,才算用得起来。
今天便介绍给大家一款思考框架:矩阵思维。
这里的矩阵不涉及数学概念,我第一次接触到它,还是在大学毕业季,那时不断为面试准备,囫囵吞枣地学了不少应试招数。其中一种叫波士顿矩阵(BCG Matrix)。它是由波士顿咨询公司创始人首创。
波士顿矩阵
在传统以营销为主导的企业中,不论是日用品消费还是生产制造加工,企业一定有一系列的产品。波士顿矩阵认为,产品战略管理可以从两个角度衡量:市场增长率和相对市场占有率。
市场增长率是包括企业销售额、竞争对手强弱及利润高低的综合指标。而相对市场占有率则代表了企业在市场上的竞争实力。
这两个都是可量化的指标,将它们分别作X轴和Y轴,则能划分出四个象限。
企业的所有产品,都会落在四个象限中。产品可以是一款洗发水,可以是一项虚拟服务、也可以是一款APP。于是这些产品被分为高增长率-高占有率、高增长率-低占有率、低增长率-高占有率、低增长率-低占有率。
在产品管理中,我们把高增长率-高占有率的产品称为明显产品,从财务报告上看,它总是能产生利润,但是高增长往往意味着高投资。某种情况下,它不代表着自给自足。如果市场份额处于垄断或者领先地位时,那么企业不必再维持投入以保持高增长,此时产品能源源不断地维持现金流,它被称为现金牛。
现金牛产品的特点是高市场份额和低增长率。产品已经迈入成熟期,其特征是产生大量的现金收入,数额远大于维持市场份额所需再投入的资金,是企业支持其他产品的后盾。
低增长率-低占有率的产品叫做瘦狗产品,这类产品对企业都是鸡肋,财务特点是利润率低、处于保本或亏损状态。这类产品往往会实行撤退或者整顿的战略。
低市场份额而高增长率的产品是问题产品,这些产品吸纳的资金总是多于所产生的资金。虽然高增长率意味着市场未来潜力好,但是份额不高要打上一个问号。不投入资金,产品会衰亡,即使投入资金,若只能勉强维持住市场份额。那么它最终仍属于瘦狗产品。
象限是动态的,明星产品的目标是成为现金牛,问题产品需要摆脱泥沼增加市场份额,而所有的产品都可能衰退为瘦狗。
举个例子吧,老王是一家消费品公司的老板,他公司主营产品是生发水,因为祖传秘方,在市场上处于领导地位,但是秃头的男人总共就那么多,所销售额近年来没有起色,未来也不会有。按照波士顿矩阵的象限划归。老王生发水应该是现金牛。
现在老王准备拓展新业务,分别是养生枸杞、保温杯、和佛珠手串。老王用生发水赚来的利润支持另外三个产品的开发。养生枸杞因为和生发水搭配营销比较好(别问我为什么),所以市场份额节节攀升。老王一看有戏,便重金投入,把养生枸杞打造成了明星产品,未来有成为第二个现金牛的潜质。
保温杯虽然和养生枸杞捆绑销售,销售额增长比较快,但是市场份额并不高,很多顾客并不买账。设计款式连中年男性都嫌弃。所以它现在是尴尬的问题产品,是改设计,还是偃旗息鼓?至于佛珠手串,顾客更喜欢大金链子,所以既没有销量又没有份额。
上述例子只是让大家对产品的象限有一个大概了解。这篇文章并不是要讲市场营销或者产品管理,即使不了解波士顿矩阵也不要紧。因为本文的主题是思考框架,我们把精力聚焦在矩阵和象限中。
实际上,在我最初学习波士顿矩阵的时候,我对现金牛、瘦狗的概念依旧一知半解。但我牢牢记住了矩阵式思考,记住了象限划分。
何为象限?我们拿两个量化指标将分析对象划分出多个种类:高-高、高-低、低-低、低-高,对象落在了四个象限,它便是矩阵思维下的产物。
初中我们把它称之为象限和坐标轴,可视化中我们把它理解为散点图,而现在,我希望大家把它认为是一种思考方式。这种思考方式,一直伴随在我往后的工作中,只要留意,矩阵思维其实有很多应用。
电商SKU
电商网站商品繁多,这里不谈品类管理,而是从电商运营的角度分析产品。
大家都应该听过爆款产品,在淘宝店铺运营中,爆款产品意味着高曝光量和低利润率。这个词第一次听其他运营提及时,他们说很多爆款产品并不赚钱,往往是做高店铺的流量。当很多人被爆款产品吸引过来的同时,会去购买店铺其他正常利润的商品,这里还会配合优惠券做交叉销售,提高营收,这种方法是俗称的带量。
在你不知道矩阵思维的时候,可能只有带量这么一个概念。而学会了矩阵,你就能听出上述那段话的两个指标:曝光量和利润率。现在用它们划分出四个象限。
高曝光量-高利润率的商品,属于电商中的明星产品,是重要的现金流业务。这里的曝光量可以是淘宝站内的店铺流量,也可以是独立电商平台的各种营销渠道。除了明星产品外,还对应着高曝光量-低利润率的导流商品,低曝光量-高利润率的成长潜力商品,低曝光量-低利润率的鸡肋商品等。
每种类别的商品对应不同的运营策略,潜力商品可以在后期运营中增长曝光量,培养搜索权重;鸡肋商品则要优化转化率。这里通过象限梳理清楚了基于商品的运营逻辑,避免无头苍蝇般的抓瞎。
矩阵思维的一个优点是方便归类和聚焦,它是可以指导策略的。
商品的象限维度不止曝光量和利润率。我们可以尝试曝光量-转化率,去分析商品落地页的效果,比如高曝光量-低转化率的商品,是不是设计和文案有问题?也可以尝试利润率-回购率的象限维度,衡量商品长期的盈利多寡,某个商品虽然利润低了些,但是用户会反复购买,那么它也是半个明星产品。
矩阵的维度是很灵活的,大家要学会举一反三。
RFM
RFM模型是客户管理中的经典方法,它用来划分客户价值。
RFM主要依赖三个核心指标:消费金额、消费频率和最近一次消费时间。我以前的文章曾经介绍过这部分,所以这里不多讲。
上图便是传统RFM模型的结构(这图是不是快腻了?),对应着用户消费分层的八个象限,也就是一个立方体形态。它属不属于矩阵思维呢?
它是的。矩阵思维只是一个思考框架,它本来就没被限制固定的形态。我能用两个指标划分四个象限,那么就不能用三个指标划分出八个象限?
曾经遇到过一位数据运营,就很灵活的运用RFM将它套入到企业端的运营分析中,那是一款PaaS,他将企业端客户在产品上的使用人数、使用深入程度以及最近一次使用时间进行分层。
写这点,是希望打破各位思维中的墙。只要象限合理、可用,数量是不是四并不重要。
绩效管理
在阿里巴巴的绩效管理中,会涉及两项考评:工作业绩和价值观。
这里把员工的管理划分成了四个象限:工作业绩强价值观好的是明星;工作业绩差而价值观好的是小白兔;工作业务好但是价值观差的是野狗;工作业绩差并且价值观也差的是狗。另外还有一块细分叫做牛,处于四个象限的交汇点,属于价值观和业务都不错的中坚骨干力量,第五个维度。
它也是一种矩阵思维的应用,不过应用在了人力资源管理上。管理模式没有对错,价值观也是一项难以量化的指标,即使是工作业绩,不同部门的标准也往往不一样,所以这种矩阵思维,更多是不同象限内人的管理策略,不涉及实际的分析。
销售管理
说到管理人,剔除掉价值观,我们单独拎出员工的绩效看。
销售每天都要跑客户,假如你是销售们的经理,你会怎么管理员工?这里不谈纯激励向的手段,如果想要对销售人本身做一点分析,我们也不妨引入矩阵。
拿销售们关心的两个KPI:成单率和平均成单额看。成单率是销售每个月成功单数在所有拜访中的占比,是工作效率和业务能力体现。成单额则是和客户价值挂钩。某个销售每天跑单量非常多,他或许是业绩Top,但他未必是最有效率的。高成单率-高平均成单额的销售才可以称为明星,它在销售管理中作为标杆和KOL树立。
这的矩阵思维,是为了挑选出正确的人。销售们不同于商品或者用户,往往采用军队化的方法统一管理,而矩阵是为了更科学有效。高成单率-低销售额和低成单率-高销售额的销售都有变为明星的潜力,可以为这两个象限内的销售培训和总结方法,可能是话术不好,可能是跟进不及时,可能是客户分配不对等。
早启动、晚总结、树标杆、老带新。如果某销售对拉高成单率有一手,他就能作为一名师傅在团队中推广。销售管理中,经理们常常更看重摸索出一套打法,然后把它推广的做法。所以销售的矩阵管理,就是把方法论聚焦。
上面讲的是区域经理或者销售经理如何抓团队,这套方法也能用在抓客户。RFM模型就是售后维护阶段的应用了,售前获客也是同样的道理。
时间管理
怎么用矩阵思维对付自己?
在很多时间管理方法中,事情的优先度会被建议使用两种维度:
紧急程度和重要程度。紧急程度是时间方面的约束,比如某项工作的Deadline逼近,那么它的紧急程度高,有些事情可以一个月后完成,那么紧急程度就低。重要程度则是事件造成的影响或者是破坏程度。
重要程度和紧急程度结合,很容易理解。下图列举了很多工作生活中常见的常见。
这种划分方式有助于提高自己的时间和项目管理能力,如果手头上自己有很多工作,不妨拿矩阵划分一下,以此作为执行依据。至于重要程度和紧急程度的等级,即可以二分,也可以用P1、P2、P3、P4更细的粒度。
古人云,轻重缓急,就是几百年前矩阵思维在时间管理中的智慧体现了。
搜索行为分析
这里说一个产品和用户行为结合的案例。
大家应该都用过搜索,搜索是伴随用户需求最直接的应用。不论是google或者百度这类搜索引擎,淘宝或者京东的商品搜索,乃至各类APP端的搜索框,都会接收用户输入的一段词作为查询,我们把它叫做query。
query常是一串文本,比如:什么是波士顿矩阵、矩阵的应用、美的空调、运动鞋、中山公园火锅等等。
各位在搜索的时候,有没有思考过,怎么判断查询结果的好坏呢?因为每个query都会查找到不同的结果,而这些结果的质量会影响到用户体验。用户搜索一个商品,然后服务器告诉用户没有查找到,或者虽然返回了结果,但是结果页的文案、图片或者标题差强人意,用户也失去了点击下去的欲望。这都让人抓狂。
矩阵思维当然能应用在搜索分析这类看似抽象的问题上。
我们设立两个指标维度:用户搜索后对结果的点击率,以及搜索词的查询量。前者反应了用户对搜索需求的被满意程度,后者反应了用户对该搜索的需求量。
上图是虚构的一家数据分析培训网站上的用户搜索数据。我们可以看到Python教程的搜索结果最高,说明用户需求量大,但是点击率不高,可能是用户对搜索结果,也就是课程质量不满意,而R语言教程则好上不少,可能是它的质量稍高一筹。另外一方面,Oracle和PowerBI的搜索量小,说明这部分用户基数有限,但是PowerBI点击率不错,可以考虑往后拓展这部分渠道。
实际的搜索场景更复杂些,平台型公司把搜索作为战略入口,它是一门系统化的工程。标签的索引、内容的预召回、个性化推荐都会影响结果,以后有机会再讲这块。而在中小型公司,矩阵依然是一种简明有效的方法。
KANO模型
KANO模型是对用户需求分类和优先排序的有用工具,以分析用户需求对用户满意的影响为基础,体现了产品性能和用户满意之间的非线性关系。
上面这段话摘自百科,简而言之,KANO模型认为,产品经理在梳理产品需求过程中,可以通过两个维度,“用户满意度”以及“功能完善程度”衡量,将功能划分四种不同类型的需求。
用户满意度指如果产品具备这个功能,那么用户的喜爱程度会上升。功能完善程度是如果产品不提供这个功能,那么用户的满意度会下降。这两个指标通过用户调研的量表计算出来,因为篇幅有限,计算过程就省略了。
如图,Better代表用户满意度,Worse代表功能完善度。高满意度-高具备度的功能是期望功能,这类功能是产品集中投入的点。高满意度-低具备度是魅力型功能,不提供该功能。用户的满意度不会降低,但是提供了,用户则会很喜欢。
低满意度-高具备度是产品的必备属性。如果没有这个功能,用户会认为这是件未完成品,这类功能需求属于用户的基本需求,这类功能做得再怎么好,用户的满意度也不会提升。低满意度-低具备度是无差异功能,对于用户是无关痛痒的,也就是大家俗称的伪需求。
KANO模型是对功能/服务的优先级进行探索,产品经理通过矩阵将抽象的需求概念落到实处,因为它本身就是可量化的,所以避免了很多口水仗。
当然,需求管理还能用一种简化方法,衡量的指标同时间管理中的重要程度-紧急程度一样。比如某个需求是老板要的很紧急,虽然它确实不重要;某个需求在未来的营销活动中很重要,但是短期内可以不实现。
产品功能分析
KANO模型用矩阵思维衡量了一项产品功能的优先级排序,当产品上线后,我们再次请出矩阵来判断功能的实际好坏。
平台级产品往往包含多个功能模块,越大越复杂,而不同模块产生的价值不同,为了避免撕逼,这里使用功能使用率和留存率两个维度分析。
功能日使用率是使用人数在日活跃人数中的占比,直接说明了功能使用者的多寡。留存率很好了解,这里的留存有两种考察:第一是用户使用了功能后,在某个周期再次使用该功能的概率。第二种是用户使用功能后,他再次打开APP的概率。前者考量了功能本身的粘性,后者则是看它对产品整体活跃的贡献。具体怎么用看需求。
下图是一个建议说明:
划分出功能矩阵后,运营能有针对性地围绕不同功能做文章,将各项指标提高上去。留存好、使用高的功能自然是尖刀。留存差、使用少的功能则避免花费太多力气。
PM也能量化不同功能的价值,什么功能需要迭代?什么功能需要延期?都清清楚楚烂熟于心。然后结合KANO模型看需求是不是和实际数据对应。
这里需要注意,功能本身是有限制的,比如账单功能,用户的使用频率是每个月一次,那么在指标上就不用期待太好看的数字。为了公平起见,产品矩阵的指标计算最好以新用户的使用情况为准,因为老用户容易受到各种运营的干扰。
总结
一口气介绍了多个案例,矩阵思维可以应用在商品运营、用户运营、人员管理、时间管理、用户行为分析、用户需求分析、产品功能分析等多个场景上。我相信还有更多的场景等待大家探索。
它之所以是一种经典的思维框架,在于将无序的数据通过象限归类为了有序。当面对一堆数据或信息一筹莫展时,想一想矩阵的象限划分,它也许就是点燃闪电的火苗。搜索词能被划,产品需求能被划,那么你的难点呢?
最初我并没有学会波士顿矩阵,但我牢牢地记住了矩阵这个词,无非是划四个格子嘛。是不是咨询公司首创我不知道,但在往后遇到和象限有关的技巧或者案例,我都把它们归类在矩阵思维中。
本文阅读到现在,也不过10分钟,但我相信如果你和曾经的我一样了解透了它的核心逻辑,那么恭喜你,以后的工作中,它会是一种下意识的习惯了。
思维框架本身没什么神秘,共勉之。


楼主热帖
168大数据(www.bi168.cn)是国内首家系统性关注大数据与数据科学的社区媒体与产业服务平台!
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

关于我们|小黑屋|Archiver|168大数据 ( 京ICP备14035423号|申请友情链接

GMT+8, 2018-2-22 13:10 , Processed in 0.095720 second(s), 19 queries , Xcache On.

Powered by BI168社区

© 2012-2014 海鸥科技

快速回复 返回顶部 返回列表